PROCESSING GUIDE

NYMAX[™] BIO BIO-BASED POLYAMIDE SOLUTIONS

Formulated in glass fiber-filled or unfilled materials, **Nymax[™] BIO** formulations utilize between 16 and 47 percent natural filler from renewable plant-based raw materials, reducing the carbon footprint value significantly at the beginning of the product lifecycle. These highly engineered formulations deliver comparable performance to traditional PA66 glass fiberfilled materials, plus the bio-derived solutions offer lower warpage and have excellent surface appearance and colorability. Nymax BIO low water absorption PA formulations provide excellent dimensional stability and property retention after conditioning, solving the problem of water uptake (hygroscopy) for finished parts.

Parameters	NM5600-8002 RS	NM5600-8004 RS	
Drying Temperature	100-120°C	100-130°C	
Drying Time	4–6 hours	4–6 hours	
Barrel Temperature	°C	°C	
Rear Zone	250–270	260-270	
Central Zone	260–280	270–290	
Front Zone	270–295	290-305	
Nozzle	290-300	290-300	
Mold Temperature	80-100	80-100	
Screw Speed	Moderate	Moderate	
Back Pressure	3–10bar	3–10bar	
Cushion stroke	5–10% of plasticizing stroke	5–10% plasticizing of stroke	
Injection Speed	Medium	Medium	
Injection Pressure	Medium-high	Medium-high	
Holding Pressure	30–50% of injection pressure	20-40% of injection pressure	
Screw Type	General purpose	General purpose	
Screw L/D	20:1	20:1	
Screw Compression Ratio	2.5:1	2.5:1	
Non-return Check Valve	Free flow check ring	Free flow check ring	
Nozzle Type	Reverse taper	Reverse taper	
Barrel Capacity	30–80% of barrel should be used		

Start Up & Shut Down	Recommendations	
Purge Compound	1. 2–3 melt flow PP or purging compound. PC or PA also recommended	
Regrind	1. Regrind is not suggested—glass fiber reinforce material will lose strength after regrind	
Mold Design	Recommendations	
Gates	 All types of gates can be used such as pin, fan, tunnel, tab and edge gates. Gate type should be select based on location and part geometry. Gate diameters should be equivalent to 50-80% of the average wall thickness of the part to be inject. A land length of 0.040" (1.0mm) is recommend 	
Runners	 Full-round or modified trapezoid runners are the best design and provide the least surface-to-cross-section ratio. Half-round or standard trapezoid runners are not recommended. Only naturally balanced runner systems ("H" pattern) are recommended. Each 90° bend in the system should step down in size. Vents should be placed at the intersection of each 90° bend off of the cold slug well and vented to the atmosphere. Hot runner molds are acceptable and should be sized by the manufacturer. Externally heated manifolds are recommended 	
Cold slug wells	 Place cold slug wells at the base of the sprue to capture the cold material first emerging from the nozzle. Place cold slug wells at every 90° bend in the runner system. Well depths approximately 2-3 times the diameter of the runner provide the best results. 	
Vents	 Place vents at the end of fill and anywhere potential knit/weld lines will occur. All vents need to be vented to the atmosphere. Vents should be placed at the intersection of each 90° bend in the runner system off of the cold slug well and vented to atmosphere. 	
Draft	 Draft angle should be 1/2° to 1° per side. Additional draft may be required for grained/textured surfaces. 	

TROUBLESHOOTING

Implement recommended solutions one at a time in the order specified until problem is resolved.

Problem	Cause	Solution
Incomplete fill	Melt and/or mold too cold	 Increase nozzle and barrel temperatures Increase mold temperature Increase injection rate Check thermocouples and heater bands
	Mold design	 Enlarge or widen vents and increase number of vents Check that vents are unplugged Check that gates are unplugged Enlarge gates and/or runners Perform short shots to determine fill pattern and verify proper vent location Increase wall thickness to move gas trap to parting line
	Shot size	 Increase shot size Adjust transfer positon to 98% full Increase cushion
Brittleness	Degraded/ overheated material	 Decrease melt temperature Decrease back pressure Use smaller barrel Decrease injection speed
	Gate location and/or size	 Relocate gate to non-stress area Increase gate size to allow higher flow rate and lower molded in stress
	Wet material	1. Check moisture of material to ensure it is within the recommended moisture percentage for molding
Splay	Melt temperature too low	 Increase melt temperature Increase mold temperature Increase injection speed
	Wet material	1. Check moisture of material to ensure it is within the recommended moisture percentage for molding
Sink marks	Part geometry too thick	 Reduce wall thickness Reduce rib thickness
	Melt too hot	 Decrease nozzle and barrel temperatures Decrease mold temperature
	Insufficient material volume	 Increase shot size Increase injection rate Increase packing pressure Increase gate size
Shrink	Too much shrink	 Increase cooling time Decrease mold temperature
	Too little shrink	 Decrease cooling time Increase mold temperature

Problem	Cause	Solution
Flash	Injection pressure too high	 Decrease injection pressure Increase clamp pressure Decrease injection speed Increase transfer position
	Excess material volume	 Adjust transfer position Decrease pack pressure Decrease shot size Decrease injection speed
	Melt and/or mold too hot	 Decrease nozzle and barrel temperatures Decrease mold temperatures
	Loose clamp	 Reset mold height Increase clamp tonnage
Burning	Melt and/or mold too hot	 Decrease nozzle and barrel temperatures Decrease mold temperature Decrease injection speed Reduce decompression
	Mold design	 Clean, widen and increase number of vents Increase gate size to reduce shear
	Wet material	1. Verify material is dried at proper condition
Nozzle drool	Nozzle temperature too hot	 Decrease nozzle temperature Decrease back pressure Increase screw decompression Verify material has been dried at proper conditions
	Incorrect nozzle	1. Use reverse taper nozzle
Weld lines	Melt front temperatures are too low	 Increase pack and hold pressure Increase melt temperature Increase vent width and locations Increase injection speed Increase mold temperature
	Mold design	 Increase gate size Identify end of fill pattern and verify proper vent location Add vents or increase vent width Move gate location
Warp	Melt front temperatures are too low	 Increase melt temp Reduce injection speed Increase pack pressure Increase pack time Decrease mold temperature Increase cool time
	Mold design	1. Non-uniform mold cooling
	Part design	1. Non-uniform wall thickness
	Thermolator incorrect temperature	 Check settings Inspect thermocouple

Problem	Cause	Solution
Sticking in mold	Cavities are over packed	 Decrease injection speed and pressure Decrease hold pressure Adjust transfer position Decrease nozzle and barrel temperatures Decrease mold temperature Increase cooling time
	Mold design	 Increase draft angle Polish cores in direction of ejection
	Part is too hot	 Decrease barrel temperatures Decrease mold temperature Increase cooling time
Black specks	Contamination	1. Purge machine
	Degradation	 Reduce melt temperature Reduce screw speed Reduce back pressure
	Machine related	1. Check for wear on screw, barrel or check ring
Delamination	Process related	 Increase melt temperature Decrease injection speed Purge barrel to eliminate material contamination
	Mold design	 Reduce sharp corners in material flow path Increase venting
Discoloration	Oversheared material	 Decrease melt temperature Decrease injection speed Reduce residence time
	Mold design	1. Increase gate sizing
	Dry material	1. Check moisture of material to ensure it is within the recommended moisture percentage for molding

1.844.4AVIENT www.avient.com

Copyright © 2022, Avient Corporation. Avient makes no representations, guarantees, or warranties of any kind with respect to the information contained in this document about its accuracy, suitability for particular applications, or the results obtained or obtainable using the information. Some of the information arises from laboratory work with small-scale equipment which may not provide a reliable indication of performance or properties obtained or obtainable on larger-scale equipment. Values reported as "typical" or stated without a range do not state minimum or maximum properties; consult your sales representative for property ranges and min/max specifications. Processing conditions can cause material properties to shift from the values stated in the information. Avient makes no warranties or guarantees respecting suitability of either Avient's products or the information for your process or end-use application. You have the responsibility to conduct full-scale end-product performance testing to determine suitability in your application, and you assume all risk and liability arising from your use of the information and/or use or handling of any product. AVIENT MAKES NO WARRANTIES, EXPRESS OR MAPARTICULAR PURPOSE, either with respect to the information or products reflected by the information. This literature shall NOT operate as permission, recommendation, or inducement to practice any patented invention without permission of the patent owner.